Two point charges $( + Q)$ and $( - 2Q)$ are fixed on the $X-$axis at positions $a$ and $2a$ from origin respectively. At what positions on the axis, the resultant electric field is zero
Only $x = \sqrt 2 a$
Only $x = - \sqrt 2 a$
Both $x = \pm \sqrt 2 a$
$x = \frac{{3a}}{2}$ only
Time period of a block suspended from the upper plate of a parallel plate capacitor by a spring of stiffness $k$ is $T$. When block is uncharged. If a charge $q$ is given to the block them, the new time period of oscillation will be
Give physical meaning of electric field.
Two charges $e$ and $3 e$ are placed at a distance $r$. The distance of the point where the electric field intensity will be zero is .........
A charged particle is suspended in equilibrium in a uniform vertical electric field of intensity $20000\, V/m$. If mass of the particle is $9.6 \times {10^{ - 16}}\,kg$, the charge on it and excess number of electrons on the particle are respectively $(g = 10\,m/{s^2})$
The tiny ball at the end of the thread shown in figure has a mass of $0.5 \, g$ and is placed in a horizontal electric field of intensity $500\, N/C$. It is in equilibrium in the position shown. The magnitude and sign of the charge on the ball is .....$\mu C$