આપણે સાદા લોલકના દોલનના આવર્તકાળનું માપન કરીએ છીએ. જેમાં ક્રમિક અવલોકનોનાં માપ નીચે મુજબ મળે છે : $2.63 \;s , 2.56 \;s , 2.42\; s , 2.71 \;s$ અને $2.80 \;s$ તો અવલોકનોમાં ઉદ્ભવતી નિરપેક્ષ ત્રુટિ, સાપેક્ષ ત્રુટિ અને પ્રતિશત ત્રુટિની ગણતરી કરો.
લોલકના દોલનનો સરેરાશ આવર્તકાળ
$T \;=\frac{(2.63+2.56+2.42+2.71+2.80) \,s}{5}$
$\quad=\frac{13.12}{5} \;s$
$=2.624\, s $
$=2.62 \,s$
અહીં, સમયનું માપન $0.01 \,s$ ના વિભેદન સુધી કરેલ હોવાથી સમય માપનના દરેક અવલોકનો બે દશાંશ સ્થાન સહિત છે. તેથી દોલનના સરેરાશ આવર્તકાળને પણ બે દશાંશ સ્થાન સુધી લેવા યોગ્ય છે.
માપનમાં ઉદ્ભવેલી ત્રુટિઓ નીચે મુજબ છે :
$2.63\, s -2.62 \,s =0.01 \,s$
$2.56 \,s-2.62\, s=-0.06 \,s$
$2.42\, s -2.62 \,s =-0.20 \,s$
$2.71 \,s -2.62 \,s =0.09 \,s$
$2.80 \,s-2.62\, s=0.18 \,s$
અહીં નોંધો કે ત્રુટિઓના એકમ પણ માપેલ ભૌતિકરાશિઓના જ એકમો છે.
બધી જ નિરપેક્ષ ત્રુટિઓનું ગાણિતિક સરેરાશ (ગાણિતિક સરેરાશ માટે આપણે માત્ર મૂલ્યો જ લઈશું.)
$ \Delta T_{\text {mean}} =[(0.01+0.06+0.20+0.09+0.18) \,s ] / 5 $
$=0.54 \,s / 5 $
$=0.11 \,s $
આનો અર્થ એ થાય કે સાદા લોલકના દોલનનો આવર્તકાળ $\left( {2.62{\rm{ }} \pm {\rm{ }}0.1} \right)\,{\rm{ }}s$ છે.
એટલે કે તેનું મૂલ્ય $\left( {2.62{\rm{ + }}0.11} \right)\,{\rm{ }}s$ અને $\left( {2.62{\rm{ - }}0.11} \right)\,{\rm{ }}s$ અથવા $2.73\,s$ અને $2.51 \,s$ ની વચ્ચે આવેલ છે. અહીં બધી જ નિરપેક્ષ ત્રુટિનું સરેરાશ $0.11 \,s$ છે. આમ, આ મૂલ્યમાં સેકન્ડનાં દસમા ભાગ જેટલી ત્રુટિ પહેલેથીજ છે. તેથી દોલનના આવર્તકાળનું મૂલ્ય સેકન્ડના સોમા ભાગ સુધી દર્શાવવાનો કોઈ જ અર્થ નથી. આમ, તેને વધુ સાચી રીતે નીચે મુજબ દર્શાવી શકાય ?
$T=2.6 \pm 0.1\, s$
આ ઉદાહરણમાં સાપેક્ષ ત્રુટિ અથવા પ્રતિશત ત્રુટિ
$\delta a=\frac{0.1}{2.6} \times 100=4 \%$
એક વિદ્યાર્થી સમૂહ દ્વારા ભૌતિક સંતુલનનો ઉપયોગ પદાર્થનું દળ શોધવા માટે વપરાય છે. વદ્યુ સંખ્યામાં લેવાતા અર્થઘટનો શું ઘટશે?
એક ઘનની ઘનતાના માપનમાં દળ અને લંબાઈ અનુક્રમે $(10.00 \pm 0.10)\,\,kg\,$ અને $(0.10 \pm 0.01)\,\,m\,$ છે. તો તેની ઘનતાના માપનમાં કેટલી ત્રુટિ હશે?
નળાકારની લંબાઇ $0.1\, cm$ લઘુતમ માપશકિત ધરાવતા સાધનથી માપતા $5 \,cm$ મળે છે,અને $0.01\,cm$ લઘુતમ માપશકિત ધરાવતા સાધનથી ત્રિજયા માપતા $2.0 \,cm$ મળે છે,તો નળાકારના કદમાં પ્રતિશત ત્રુટિ ......... $\%$ થાય.
એક પ્રયોગશાળામાં ધાતુના તારની ત્રિજ્યાં$(r)$, લંબાઈ $(l)$ અને અવરોધ $(R)$
$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$
$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$
$l=(15 \pm 0.2) \mathrm{cm}$
મુજબ માપવામાં આવે છે.તારના દ્રવ્યની અવરોધકતાની પ્રતિશત ત્રુટિ___________છે.
રિંગના દળ, ત્રિજ્યા અને કોણીય વેગના માપનમાં મહત્તમ પ્રતિશત ક્ષતિ અનુક્રમે $ 2\%, 1\% $ અને $1\%$ છે તો ભૌગોલિક અક્ષ $J$ નું કોણીય વેગમાન $ I \omega $ ની મહત્તમ પ્રતિશત ક્ષતિ ........ $\%$ હશે.