हम एक सरल लोलक का दोलन-काल ज्ञात करते हैं। प्रयोग के क्रमिक मापनों में लिए गए पाठ्यांक हैं $: 2.63, s , 2.56\, s , 2.42\, s , 2.71\, s$ एवं $2.80\, s$ । निरपेक्ष त्रुटि, सापेक्ष त्रुटि एवं प्रतिशत त्रुटि परिकलित कीजिए।
Answer The mean perlod of oscillation of the pendulum
$T \;=\frac{(2.63+2.56+2.42+2.71+2.80) \,s}{5}$
$\quad=\frac{13.12}{5} \;s$
$=2.624\, s $
$=2.62 \,s$
As the periods are measured to a resolution of $0.01 \,s ,$ all times are to the second decimal; it is proper to put this mean perlod also to the second decimal.
The errors in the measurements are
$2.63 \,s -2.62 \,s =0.01 \,s$
$2.56 \,s-2.62 \,s=-0.06 \,s$
$2.42\, s -2.62\, s =-0.20 \,s$
$2.71 \,s -2.62\, s =0.09 \,s$
$2.80\, s-2.62\, s=0.18\, s$
The arthmetic mean of all the absolute errors (for arithmetic mean, we take only the magnitudes) is
$ \Delta T_{\text {mean}} =[(0.01+0.06+0.20+0.09+0.18) \,s ] / 5 $
$=0.54 \,s / 5 $
$=0.11 \,s $
$T=2.6 \pm 0.1 \,s$
$\delta a=\frac{0.1}{2.6} \times 100=4 \%$
कोई भौतिक राशि $P$. चार प्रेक्षण-योग्य राशियों $a.b . c$ तथा $d$ से इस प्रकार संबधित है | $P \quad a^{3} b^{2} / \sqrt{c} d$ $a, b, c$ तथा $d$ के मापने में प्रतिशत त्रुटियां क्रमश: $1 \% .3 \% .4 \% .$ तथा $2 \% .$ हैं । राशि $P$ में प्रतिशत त्रुटि कितनी है ? यदि उपर्युक्त संबंध का उपयोग करके $P$ का परिकलित मान $3.763$ आता है, तो आप परिणाम का किस मान तक निकटन करेंगे ?
किसी वस्तु के वेग के मापन में $50\%$ धनात्मक त्रुटि है, तो गतिज ऊर्जा के मापन में त्रुटि ............ $\%$ होगी
किसी घड़ी द्वारा मापे गए समय अन्तरालों के पाठयांक नीचे दिए गए हैं:
$1.25 \,s , 1.24 \,s , 1.27\, s , 1.21 \,s$ और $1.28s$
इन प्रेक्षणों की आपेक्षिक प्रतिशत त्रुटि $........\,\%$ है?
प्रयोगशाला में एक विद्यार्थी स्क्रूगेज द्वारा तार की मौटाई मापता है। पाट्यांक $1.22\,mm , 1.23\,mm$, $1.19\,mm$ तथा $1.20\,mm$ है। यदि प्रतिशत त्रुटि $\frac{ x }{121} \%$ तो $x$ का मान ज्ञात कीजिये।
ताप तथा वोल्टेज स्रोत में अप्रत्याशी उतार चढ़ाव के कारण मापन में त्रुटियाँ हैं :