मापन की शुद्धता निर्धारित होती है
प्रतिशत त्रुटि से
निरपेक्ष त्रुटि से
दोनों
उपरोक्त में से कोई नहीं
(b)
घन की आकृति वाले किसी पदार्थ का घनत्व, उसकी तीन भुजाओं एवं द्रव्यमान को माप कर, निकाला जाता है। यदि द्रव्यमान एवं लम्बाई कों मापने में सापेक्ष त्रुटियाँ क्रमशः $1.5 \%$ तथा $1 \%$ हो तो घनत्व को मापने में अधिकतम त्रुटि ……… $\%$ होगी
एक चाँदी के तार का द्रव्यमान $(0.6\,\pm 0.006)\,g$, त्रिज्या $(0.5\,\pm 0.005)\,mm$ तथा लम्बाई $(4\,\pm\,0.04)\,cm$ हैं। इसके घनत्व के मापन में अधिकतम प्रतिशत त्रुटि $……\,\%$ होगी:
किसी वस्तु के पदार्थ का आपेक्षिक घनत्व इसे पहले वायु में फिर पानी में तोल कर मापा गया। यदि वायु में भार ($5.00 \pm 0.05$) न्यूटन तथा पानी में भार ($4.00 \pm 0.05$) न्यूटन है, तो आपेक्षिक घनत्व में अधिकतम प्रतिशत त्रुटि होगी
कोई भौतिक राशि $P$. चार प्रेक्षण-योग्य राशियों $a.b . c$ तथा $d$ से इस प्रकार संबधित है | $P \quad a^{3} b^{2} / \sqrt{c} d$ $a, b, c$ तथा $d$ के मापने में प्रतिशत त्रुटियां क्रमश: $1 \% .3 \% .4 \% .$ तथा $2 \% .$ हैं । राशि $P$ में प्रतिशत त्रुटि कितनी है ? यदि उपर्युक्त संबंध का उपयोग करके $P$ का परिकलित मान $3.763$ आता है, तो आप परिणाम का किस मान तक निकटन करेंगे ?
सर्ल के प्रयोग में वर्नियर पैमाने का शून्य मुख्य पैमाने पर $3.20 \times 10^{-2} m$ तथा $3.25 \times 10^{-2} m$ के बीच है। वर्नियर पैमाने का बीसवाँ भाग ( $20^{\text {th }}$ division) मुख्य पैमाने के किसी एक भाग के बिलकुल सीध में है। तार पर $2 \ kg$ का अतिरिक्त भार लगाने पर, यह देखा गया कि वर्नियर पैमाने का शून्य अभी भी मुख्य पैमाने पर $3.20 \times 10^{-2} m$ तथा $3.25 \times 10^{-2} m$ के बीच है, परन्तु अब वर्नियर पैमाने का पैंतालिसवाँ भाग ( $45^{\text {th }}$ division) मुख्य पैमाने के किसी अन्य भाग के बिलकुल सीध में है। धातु के पतले तार की लम्बाई $2 m$ तथा अनुप्रस्थ काट का क्षेत्रफल $8 \times 10^{-7} m ^2$ है। पैमाने का अल्पतमांक (least count) $1.0 \times 10^{-5} m$ है। तार के यंग प्रत्यास्थता गुणांक (Young's modulus) में अधिकतम प्रतिशत त्रुटि है।
Confusing about what to choose? Our team will schedule a demo shortly.