What is the $20^{\text {th }}$ term of the sequence defined by

$a_{n}=(n-1)(2-n)(3+n) ?$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Putting $n=20,$ we obtain

$a_{20} =(20-1)(2-20)(3+20) $

$=19 \times(-18) \times(23)=-7866$

Similar Questions

The roots of the quadratic equation $3 x ^2- px + q =0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first $11$ terms of this arithmetic progression is $88$ , then $q-2 p$ is equal to_______

  • [JEE MAIN 2025]

The four arithmetic means between $3$ and $23$ are

A man starts repaying a loan as first instalment of $Rs.$ $100 .$ If he increases the instalment by $Rs \,5$ every month, what amount he will pay in the $30^{\text {th }}$ instalment?

If the sides of a right angled traingle are in $A.P.$, then the sides are proportional to

If the first term of an $A.P.$ is $3$ and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first $20$ terms is equal to

  • [JEE MAIN 2025]