$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में

चार पत्ते एक ही प्रकार $(suit)$ के हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

There will be as many ways of choosing $4$ cards from $52$ cards as there are combinations of $52$ different things, taken $4$ at a time. Therefore

The required number of ways $=\,\,^{52} C _{4}=\frac{52 !}{4 ! 48 !}=\frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4}$

$=270725$

There are four suits: diamond, club, spade, heart and there are $13$ cards of each suit. Therefore, there are $^{13} C _{4}$ ways of choosing $4$ diamonds. Similarly, there are $^{13} C _{4}$ ways of choosing $4$ clubs, $^{13} C _{4}$ ways of choosing $4$ spades and $^{13} C _{4}$ ways of choosing $4$ hearts. Therefore

The required number of ways $=\,^{13} C _{4}+^{13} C _{4}+^{13} C _{4}+^{13} C _{4}$

$=4 \times \frac{13 !}{4 ! 9 !}=2860$

Similar Questions

$12$ उपलब्ध पाठक्रमों, जिनके $5$ भाषा के पाठयक्रम है, में से एक लड़के को पाँच पाठयक्रम लेने हैं। यदि वह अधिकतम दो भाषा के पाठयक्रम ले सकता है, तो उसके द्वारा पाँच पाठयक्रम लेने के तरीकों की संख्या है__________. 

  • [JEE MAIN 2023]

यदि शब्द $EXAMINATION$ के सभी अक्षरों से बने विभिन्न क्रमचयों को शब्दकोष की तरह सूचीबद्ध किया जाता है, तो $E$ से प्रारंभ होने वाले प्रथम शब्द से पूर्व कितने शब्द हैं ?

$10$ व्यक्ति दो नावों पर कितनी प्रकार से जा सकते हैं ताकि दोनों नावों पर  $5$ व्यक्ति रहें, जबकि यह माना गया है कि दो विशेष व्यक्ति एक ही नाव में नहीं जायेंगे

$8$ पुरूषों तथा $ 4$ महिलाओं को लेकर $6$ सदस्यों की एक समिति कितने प्रकार से बनाई जा सकती है, जबकि कम से कम $3$ महिलायें सदैव सम्मिलित रहें

$5$ विभिन्न हरी, $4$ विभिन्न नीली एवं $3$ विभिन्न लाल रंग की गेंदों से कुल कितने समूह बनाये जा सकते हैं यदि कम से कम $1$ हरी एवं $1$ नीली गेंद अवश्य शामिल की जाए

  • [IIT 1974]