$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में

तस्वीरें हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

There will be as many ways of choosing $4$ cards from $52$ cards as there are combinations of $52$ different things, taken $4$ at a time. Therefore

The required number of ways $=\,\,^{52} C _{4}=\frac{52 !}{4 ! 48 !}=\frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4}$

$=270725$

There are $12$ face cards and $4$ are to be selected out of these $12$ cards. This can be done in $^{12} C _{4}$ ways.

Therefore, the required number of ways $=\frac{12 !}{4 ! 8 !}=495$

Similar Questions

यदि $\frac{{ }^{n+2} C_{6}}{{ }^{n-2} P_{2}}=11$, है, तो $n$ निम्न में से किस समीकरण को संतुष्ट करता है ?

  • [JEE MAIN 2016]

यदि $^n{C_{12}} = {\,^n}{C_6}$, तब $^n{C_2} = $

$25$ विद्यार्थियो की एक कक्षा से, $10$ का चयन एक भ्रमण-दल के लिए किया जाता है। $3$ विद्यार्थी ऐसे हैं, जिन्होंने यह निर्णय लिया है कि या तो वे तीनों दल में शमिल होंगे या उनमें से कोई भी दल में शामिल नहीं होगा। भ्रमण-दल का चयन कितने प्रकार से किया जा सकता है ?

एक बॉक्स में दो सफेद, तीन काली तथा चार लाल गेदें हैं। इस बॉक्स से तीन गेंदें कुल कितने विभिन्न प्रकारों से निकाली जा सकती हैं, जिनमें कम से कम एक काली गेंद अवश्य हो

  • [IIT 1986]

यदि $^n{C_r} = 84,{\;^n}{C_{r - 1}} = 36$ तथा $^n{C_{r + 1}} = 126$, तो $n$ का मान होगा