शांकव $16{x^2} + 7{y^2} = 112$ की उत्केन्द्रता है
$3\over \sqrt 7 $
$7\over{16}$
$3\over4$
$4\over3$
यदि रेखा $x\cos \alpha + y\sin \alpha = p$, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ पर अभिलम्ब है, तो
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$36 x^{2}+4 y^{2}=144$
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 2,\;0)$ तथा उत्केन्द्रता $\frac{1}{2}$है, होगा
बिन्दु $(2, 3)$ से जाने वाली दीर्घवृत्त $9{x^2} + 16{y^2} = 144$ की स्पर्श रेखाओं के समीकरण हैं