आरेक्ष में दर्शाए गए अनुसार बिन्दु $O$ पर विधुत क्षेत्र का परिमाण क्या होगा ? आरेख की प्रत्येक भुजा की लम्बाई $l$ है तथा प्रत्येक भुजा एक-दूसरे के लम्बवत् है।
$\frac{q}{4 \pi \varepsilon_{0}(l)^{2}}$
$\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(2l^{2})}(2 \sqrt{2}-1)$
$\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{l^{2}}$
$\frac{1}{4 \pi \varepsilon_{0}} \frac{2 {q}}{2l^{2}}(\sqrt{2})$
$q$ परिमाण के अनन्त आवेश $x$-अक्ष पर $x$ =$1\,, 2\,, 4\,, 8...$ मीटर दूरियों पर रखे हैं। इन आवेशों के कारण $x = 0$ पर विद्युत क्षेत्र का मान होगा
भुजा $a$ वाले एक वर्ग के कोनों पर तीन आवेश $q / 2$, $q$ और $q / 2$ चित्रानुसार रखे हैं। वर्ग के कोने $D$ पर विद्युत क्षेत्र $(E)$ का परिमाण होगा
एक आवेशित खोखला गोला विद्युत क्षेत्र उत्पन्न नहीं करता
दो आवेश $q$ व $3 q$ वायु में ' $r$ ' दूरी पर स्थित है। $\mathrm{q}$ आवेश से $\mathrm{x}$ दूरी पर परिणामी वैद्युत क्षेत्र शून्य है। $\mathrm{x}$ का मान है
$a$ भुजा वाले एक समबाहु त्रिभुज के दो कोनों पर दो आवेश प्रत्येक $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ रखें हैं। तीसरे कोने पर विद्युत क्षेत्र ${E_3}$ है। तो क्या सही है $({E_0} = q/4\pi {\varepsilon _0}{a^2})$