जब $\frac{1}{a} + \frac{1}{c} + \frac{1}{{a - b}} + \frac{1}{{c - d}} = 0$ और $b \ne a \ne c$, तब $a,\;b,\;c$ होंगे

  • A

    समान्तर श्रेणी में

  • B

    गुणोत्तर श्रेणी में

  • C

    हरात्मक श्रेणी में

  • D

    इनमें से कोई नहीं

Similar Questions

माना $\frac{1}{16}, a$ तथा $b$ G.P. में है तथा $\frac{1}{ a }, \frac{1}{ b }, 6 \, A.P.$ में है, जहाँ $a , b >0$ है। तो $72( a + b )$ बराबर है ........ |

  • [JEE MAIN 2021]

अनुक्रम $\frac{1}{{16}},a,b,\frac{1}{6}$ के प्रथम तीन पद गुणोत्तर श्रेणी में तथा अन्तिम तीन पद हरात्मक श्रेणी में हों, तो $a$ व $b$ के मान होंगे

यदि ${A_1},\;{A_2};{G_1},\;{G_2}$ और ${H_1},\;{H_2}$ दो संख्याओं के मध्य क्रमश: समान्तर माध्य, गुणोत्तर माध्य और हरात्मक माध्य प्रदर्शित करें, तो $\frac{{{G_1}{G_2}}}{{{H_1}{H_2}}} \times \frac{{{H_1} + {H_2}}}{{{A_1} + {A_2}}}$ का मान होगा

यदि ${\log _x}y,\;{\log _z}x,\;{\log _y}z$ गुणोत्तर श्रेणी में  हों तथा $xyz = 64$ व ${x^3},\;{y^3},\;{z^3}$ समान्तर श्रेणी में हों, तब

यदि $p, q, r$ गुणोत्तर श्रेणी में हैं तथा समीकरणों $p x^{2}+2 q x+r=0$ और $d x^{2}+2 e x+f=0$ एक उभयनिष्ठ मूल रखते हों, तो दर्शाइए कि $\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$ समांतर श्रेणी में हैं।