निम्न में से कौनसा ग्राफ, $R$ त्रिज्या के खोखले गोलीय चालक के कारण विद्युत क्षेत्र $E$ तथा गोले के केन्द्र से दूरी $r$ में परिवर्तन को दर्शाता है

  • A
    116-a4
  • B
    116-b4
  • C
    116-c4
  • D
    116-d4

Similar Questions

यदि पृथक्कृत कुचालक गोले की त्रिज्या $R$ तथा आवेश घनत्व $\rho $ है। गोले के केन्द्र से $r$ दूरी $(r\; < \;R)$ पर विद्युत क्षेत्र होगा

दो $R$ व $2 R$ त्रिज्या वाले अचालक ठोस गोलको को जिन पर क्रमशः $\rho_1$ तथा $\rho_2$ एकसमान आयतन आवेश घनत्व है, एक दूसरे से स्पर्श करते हुए रखा गया है। दोंनो गोलकों के केन्द्रों से गुजरती हुई रेखा खींची जाती है। इस रेखा पर छोटे गोलक के केन्द्र से $2 R$ दूरी पर नेट विद्युत क्षेत्र शून्य है। तब अनुपात $\frac{\rho_1}{\rho_2}$ का मान हो सकता है:

  • [IIT 2013]

$(a)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र के अभिलंब घटक में असांतत्य होता है, जिसे

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{\rho}}$

द्वारा व्यक्त किया जाता है। जहाँ $\hat{ n }$ एक बिदु पर पृष्ठ के अभिलंब एकांक सदिश है तथा $\sigma$ उस बिंदु पर पृष्ठ आवेश घनत्व है ( $\hat{ n }$ की दिशा पार्श्व $1$ से पार्श्व $2$ की ओर है।) अत: दर्शाइए कि चालक के ठीक बाहर विध्यूत क्षेत्र $\sigma \hat{ n } / \varepsilon_{0}$ है।

$(b)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र का स्पर्शीय घटक संतत है।

अपरिमित लम्बाई और $R$ त्रिज्या के एक ठोस बेलन पर एक समान आयतन-आवेश-घनत्व $\rho$ है। इसमें $R / 2$ त्रिज्या एक खोखला गोलीय-कोष बेलन के अक्ष पर केन्द्रित है (चित्र देखिये)$।।$ अक्ष से $2 \ R$ दूरी पर स्थित बिन्दु $P$ पर विधुत $\frac{23 p }{16 k \varepsilon_0}$ से दिया जाता है। तब $k$ का मान क्या है ?

  • [IIT 2012]

$10\,cm$ त्रिज्या वाले एकसमान आवेशित कुचालक गोले के केन्द्र से $20\,cm$ की दूरी पर विद्युत क्षेत्र $100\, V/m$ है। गोले के केन्द्र से $3\,cm$ दूरी पर विद्युत क्षेत्र .....$V/m$ होगा