એકબીજા સાથે $\theta$ કોણ બનાવતા બે એકમ સદિશો $\hat{A}$ અને $\hat{B}$ માટે નીચેનામાંથી કયો સંબંધ સાચો છે $?$
$|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \tan \frac{\theta}{2}$
$|\hat{ A }-\hat{ B }|=|\hat{ A }+\hat{ B }| \tan \frac{\theta}{2}$
$|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \cos \frac{\theta}{2}$
$|\overrightarrow{ A }-\hat{ B }|=|\overrightarrow{ A }+\hat{ B }| \cos \frac{\theta}{2}$
કેટલાક સદિશોના પરિણામીનો $x$ ઘટક.......
(a) એ સદિશોના $x$ ઘટકના સરવાળા જેટલો હોય છે.
(b) સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ ઓછો હોય છે.
(c) સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ વધારે હોય છે.
(d) સદિશોના મૂલ્યના સરવાળા જેટલો હોય છે.
આપેલા વિધાન માથી સાચા વિધાન ક્યાં છે ?
$A$ અને $\frac{A}{2}$ નાં મૂલ્યો ધરાવતા બે બળો એકબીજાને લંબ છે. તેનું પરિણામીનું મૂલ્ય ...... છે.
બે સદિશો $ \hat i - 2\hat j + 2\hat k $ અને $ 2\hat i + \hat j - \hat k, $ માં કયો સદિશ ઉમેરવાથી $X-$ દિશામાંનો એકમ સદિશ મળે.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
ક્યાં સદિશને પરિણામી સદિશ $\mathop P\limits^ \to \,\, = \,\,2\hat i\,\, + \;\,7\hat j\,\, - \,\,10\hat k\,\,$ અને $\,\,\mathop Q\limits^ \to \,\, = \,\,\hat i\,\, + \;\,2\hat j\,\, + \;\,3\hat k$ માં ઉમેરવામાં આવે તો તે $X$- અક્ષની દિશામાં એકમ સદિશ આપે.