એકબીજા સાથે $\theta$ કોણ બનાવતા બે એકમ સદિશો $\hat{A}$ અને $\hat{B}$ માટે નીચેનામાંથી કયો સંબંધ સાચો છે $?$
$|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \tan \frac{\theta}{2}$
$|\hat{ A }-\hat{ B }|=|\hat{ A }+\hat{ B }| \tan \frac{\theta}{2}$
$|\hat{ A }+\hat{ B }|=|\hat{ A }-\hat{ B }| \cos \frac{\theta}{2}$
$|\overrightarrow{ A }-\hat{ B }|=|\overrightarrow{ A }+\hat{ B }| \cos \frac{\theta}{2}$
$F$ અને $2F$ બળોનું પરિણામી એ $F$ ને લંબ છે.તો બે બળ વચ્ચેનો ખૂણો ........ $^o$ હશે.
જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
જો વર્તુળની ત્રિજયા $R$ હોય તો સદિશો $ \overrightarrow {OA} ,\,\overrightarrow {OB} $ અને $ \overrightarrow {OC} $ નો પરિણામી સદિશ કેટલો થશે?
એક $ \vec{A}$ સદિશ છે જેનું માપન મુલ્ય પૂર્વ દિશામાં $2.7$ એકમ છે. તો $4 \vec{A}$ સદિશનું માપન મુલ્ય અને દિશા કઈ હોય?
બે સદીશો $\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to \,$ હોય તો , $\mathop A\limits^ \to \, + \mathop B\limits^ \to \,\,\, = \,\,\mathop C\limits^ \to $ અને ${A^2}\,\, + \;\,{B^2}\,\, = {C^2}$ છે . નીચેના માંથી ક્યું વિધાન સાચું છે .