9-1.Fluid Mechanics
normal

Work of $3.0\times10^{-4}$ joule is required to be done in increasing the size of a soap film from $10\, cm\times6\, cm$ to $10\, cm\times11\, cm$. The surface tension of the film is

A

$5\times10^{-2}\, N/m$

B

$3\times10^{-2}\, N/m$

C

$1.5\times10^{-2}\, N/m$

D

$1.2\times10^{-2}\, N/m$

Solution

Area increased $=(10 \times 11)-(10 \times 6) \mathrm{\,cm}^{2}$

$=110-60=50 \mathrm{\,cm}^{2}$

Since film has $2$ sides

$\therefore$ total increased area $=50 \times 2=100 \mathrm{cm}^{2}$

work done $=$ surface tension $\times$ increase in surface area

$\Rightarrow$ Surface tension

$=\frac{\text { Work done }}{\text { increasein surface area }}$

$=\frac{3 \times 10^{-4}}{100 \mathrm{\,cm}^{2}}=\frac{3 \times 10^{-4}}{100 \times 10^{-4} \mathrm{\,m}^{2}}$

$=0.03 \mathrm{\,N} / \mathrm{m}=3 \times 10^{-2} \mathrm{\,N} / \mathrm{m}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.