अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ जहाँ $n>2$
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$
$\Rightarrow a_{3}=a_{2}-1=2-1=1$
$a_{4}=a_{3}-1=1-1=0$
$a_{5}=a_{4}-1=0-1=-1$
Hence, the first five terms of the sequence are $2,2,1,0$ and $-1$
The corresponding series is $2+2+1+0(-1)+\ldots$
यदि श्रेणियों $63 + 65 + 67 + 69 + .........$ तथा $3 + 10 + 17 + 24 + ......$ के $m$ वें पद बराबर हों, तो $m = $
माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है
समांतर श्रेढ़ी $3,8,13, \ldots . .373$ के उन सभी पदों, जो $3$ से विभाज्य नहीं है, का योग बराबर है________
उस समांतर श्रेणी के $n$ पदों का योगफल ज्ञात कीजिए, जिसका $k$ वाँ पद $5 k +1$ है।
माना तीन अंक $a, b, c$ $A.P.$ में हैं। इनमें से प्रत्येक अंक को तीन बार प्रयोग कर $9$ अंको की संख्याएँ इस प्रकार बनाई जाती है कि तीन क्रमागत संख्याएँ कम से कम एक बार $A.P.$ में हो। इस प्रकार की कितनी संख्याएँ बनाई जा सकती है ?