अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ जहाँ $n>2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n\,>\,2$

$\Rightarrow a_{3}=a_{2}-1=2-1=1$

$a_{4}=a_{3}-1=1-1=0$

$a_{5}=a_{4}-1=0-1=-1$

Hence, the first five terms of the sequence are $2,2,1,0$ and $-1$ 

The corresponding series is $2+2+1+0(-1)+\ldots$

Similar Questions

यदि श्रेणियों $63 + 65 + 67 + 69 + .........$ तथा $3 + 10 + 17 + 24 + ......$ के $m$ वें पद बराबर हों, तो  $m = $

माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है

  • [JEE MAIN 2021]

समांतर श्रेढ़ी $3,8,13, \ldots . .373$ के उन सभी पदों, जो $3$ से विभाज्य नहीं है, का योग बराबर है________

  • [JEE MAIN 2023]

उस समांतर श्रेणी के $n$ पदों का योगफल ज्ञात कीजिए, जिसका $k$ वाँ पद $5 k +1$ है।

माना तीन अंक $a, b, c$ $A.P.$ में हैं। इनमें से प्रत्येक अंक को तीन बार प्रयोग कर $9$ अंको की संख्याएँ इस प्रकार बनाई जाती है कि तीन क्रमागत संख्याएँ कम से कम एक बार $A.P.$ में हो। इस प्रकार की कितनी संख्याएँ बनाई जा सकती है ?

  • [JEE MAIN 2023]