दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।
The two-digit numbers, which when divided by $4,$ yield $1$ as remainder, are $13,17, \ldots 97$
This series forms an $A.P.$ with first term $13$ and common difference $4$
Let n be the number of terms of the $A.P.$
It is known that the $n^{th}$ term of an $A.P.$ is given by, $a_{n}=a+(n-1) d$
$\therefore 97=13+(n-1)(4)$
$\Rightarrow 4(n-1)=84$
$\Rightarrow n-1=21$
$\Rightarrow n=22$
Sum of n terms of an $A.P.$ is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{22}=\frac{22}{2}[2(13)+(22-1)(4)]$
$=11[26+84]$
$=1210$
Thus, the required sum is $1210 .$
दो समान्तर श्रेणियों के $n$ पदों के योग का अनुपात $(7n + 1):(4n + 27)$ है, तो इनके $11$ वें पदों का अनुपात होगा
यदि किसी समांतर श्रेणी का $9$ वाँ पद शून्य हो, तो उसके $29$ वें तथा $19$ वें पदों का अनुपात है
एक आदमी ने एक बैंक में $10000$ रुपये $5 \%$ वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, $15$ वें वर्ष में उसके खातें में कितनी रकम हो गई, तथा $20$ वर्षो बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।
यदि तीन भिन्न संख्याएं $a, b, c$ गुणोत्तर श्रेढ़ी में है तथा समीकरण $ax ^{2}+2 bx + c =0$ और $dx ^{2}+2 ex +$ $f=0$ का एक उभयनिष्ठ मूल है, तो निम्न में से कौन-सा एक कथन सत्य है ?
यदि $\left\{ a _{ i }\right\}_{ i =1}^{ n }$ (जहाँ $n$ सम पूर्णांक है) समान्तर श्रेढ़ी है जिसका सार्वअन्तर $1$ तथा $\sum \limits_{ i =1}^{ n } a _{ i }=192$, $\sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$ है, तो $n$ बराबर है: