$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
$\cos 60^{\circ}$
$\sin 60^{\circ}$
$\tan 60^{\circ}$
$\sin 30^{\circ}$
Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$
If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$
Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$
State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases