$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
$\cos 60^{\circ}$
$\sin 60^{\circ}$
$\tan 60^{\circ}$
$\sin 30^{\circ}$
Evaluate:
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
State whether the following are true or false. Justify your answer.
The value of $\sin \theta$ increases as $\theta$ increases.