Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

  • A

    $1$

  • B

    $2$

  • C

    $0$

  • D

    $4$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)

In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.