6.Permutation and Combination
hard

$^{n - 1}{C_r} = ({k^2} - 3)\,.{\,^n}{C_{r + 1}}$, यदि $k \in $

A

$[ - \sqrt 3 ,\,\sqrt 3 ]$

B

$( - \infty ,\, - 2)$

C

$(2,\,\infty )$

D

$(\sqrt 3 ,\,2)$

(IIT-2004)

Solution

$\frac{{(n – 1)\,!}}{{(n – r – 1)\,!\,r\,!}} = \frac{{({k^2} – 3)\,n\,!}}{{(n – r – 1)\,!\,(r + 1)\,!}}$, $0 \le r \le n – 1$

$ \Rightarrow $${k^2} = \frac{{r + 1}}{n} + 3,\,\frac{1}{n} \le \frac{{r + 1}}{n} \le 1$

==> ${k^2} \in \left[ {\frac{1}{n} + 3,\,4} \right]\,,\,n \ge 2$

$k \in \left[ { – 2,\, – \sqrt {\frac{1}{n} + 3} } \right] \cup \left[ {\sqrt {\frac{1}{n} + 3} ,\,2} \right];\,n \ge 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.