$m$ पुरूष तथा $n$ महिलाओं को एक सरल रेखा में इस प्रकार बैठाना है, कि दो महिलाएँ एक साथ न बैठें। यदि $m > n$ हो, तब दर्शाइये कि इन्हें बैठाने के कुल प्रकार हैं
$\frac{{m\;!\;(m + 1)\;!}}{{(m - n + 1)\;!}}$
$\frac{{m\;!\;(m - 1)\;!}}{{(m - n + 1)\;!}}$
$\frac{{(m - 1)\;!\;(m + 1)\;!}}{{(m - n + 1)\;!}}$
इनमें से कोई नहीं
यदि $\frac{{ }^{n+2} C_{6}}{{ }^{n-2} P_{2}}=11$, है, तो $n$ निम्न में से किस समीकरण को संतुष्ट करता है ?
$r$ का वह मान, जिसके लिये ${ }^{20} C _{ r }{ }^{20} C _{0}+{ }^{20} C _{ r -1}{ }^{20} C _{1}$ $+{ }^{20} C _{ r -2}{ }^{20} C _{2}+\ldots{ }^{20} C _{0}{ }^{20} C _{ r }$ अधिकतम है
यदि $n$ सम हो और $^n{C_r}$ का मान महत्तम हो, तो $r = $
$20$ एक रूपए के सिक्कों, $10$ पचास पैसे के सिक्कों, तथा $7$ बीस पैसे के सिक्कों, में से $6$ सिक्कों के चयन की प्रक्रिया कितने प्रकार से की जा सकती है
किसी परीक्षा में तीन वस्तुनिष्ठ प्रश्न हैं तथा प्रत्येक प्रश्न में $4$ विकल्प हैं। उन तरीकों की संख्या जिसमें कोई विद्यार्थी सभी प्रश्नों का उत्तर सही न दे सके, है