- Home
- Standard 11
- Mathematics
ધારો કે પૂર્ણાકો $n$ અને $r$ માટે $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ છે. તો સરવાળા $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ નું અસ્તિત્વ હોય, તેવી $k$ ની મહત્તમ કિમત ...... છે.
અવ્યાખ્યાયિત
$24$
$36$
$20$
Solution
$\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$
${ }^{25} C _{ k }+{ }^{25} C _{ k +1}$
${ }^{26} C _{ k +1}^{ }$
as ${ }^{ n } C _{ r }$ is defined for all values of $n$ as will as r so ${ }^{26} C _{ k +1}$ always exists
Now $k$ is unbounded so maximum value is not defined.