$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + .... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $
$100$
$120$
$- 120$
એકપણ નહીં.
$(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ નાં વિસ્તરણમાં $x^{256}$ નો સહગુણક મેળવો.
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, તો ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$= . . .
$\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ નો સરવાળો.
$\frac{1}{{1!(n - 1)\,!}} + \frac{1}{{3!(n - 3)!}} + \frac{1}{{5!(n - 5)!}} + .... = $
ધારોકે $\sum \limits_{r=0}^{2023} r^{2023} C_r=2023 \times \alpha \times 2^{2022}$, તો $\alpha$ નું મૂલ્ય $............$ છે.