$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $
$1/2$
$1/4$
$1/6$
$1/8$
If $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$which one of the following is true
If $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ and $a\,\tan x = b\,\tan y,$ then $\frac{{{a^2}}}{{{b^2}}}$ is equal to
Prove that $\cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x$
If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $
In the figure, $\theta_1+\theta_2=\frac{\pi}{2}$ and $\sqrt{3}(B E)=4(A B)$. If the area of $\triangle CAB$ is $2 \sqrt{3}-3$ unit $^2$, when $\frac{\theta_2}{\theta_1}$ is the largest, then the perimeter (in unit) of $\triangle CED$ is equal to $...........$.