If $A + B + C = {180^o},$ then $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $
$8\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$8\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$8\,\sin \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$
$8\,\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$
If $x = sec\, \phi - tan\, \phi$ & $y = cosec\, \phi + cot\, \phi$ then :
The value of $\frac{{3 + \cot \,7\,{6^ \circ }\,\cot \,{{16}^ \circ }}}{{\cot \,{{76}^ \circ } + \cot \,{{16}^ \circ }}}$ is :
$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}} =$
The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is