$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $
$\tan A$
$\cot A$
$\tan 2A$
$\cot 2A$
જો $\frac{{2\sin \alpha }}{{\{ 1 + \cos \alpha + \sin \alpha \} }} = y,$ તો $\frac{{\{ 1 - \cos \alpha + \sin \alpha \} }}{{1 + \sin \alpha }} = $
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
સાબિત કરો કે : $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$
$cos^273^o + cos^247^o + (cos73^o . cos47^o )$ =
જો $\sin \theta+\cos \theta=\frac{1}{2}$ આપેલ હોય તો $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ ની કિમંત મેળવો.