A $G.P.$ consists of an even number of terms. If the sum of all the terms is $5$ times the sum of terms occupying odd places, then find its common ratio.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the $G.P.$ be $T_{1}, T_{2}, T_{3}, T_{4} \ldots . T_{2 n}$

Number of terms $=2 n$

According to the given condition,

$T_{1}+T_{2}+T_{3}+\ldots .+T_{2 n}=5\left[T_{1}+T_{3}+\ldots .+T_{2 n-1}\right]$

$\Rightarrow T_{1}+T_{2}+T_{3}+\ldots .+T_{2 n}-5\left[T_{1}+T_{3}+\ldots . .+T_{2 n-1}\right]=0$

$\Rightarrow T_{2}+T_{4}+\ldots .+T_{2 n}=4\left[T_{1}+T_{3}+\ldots . .+T_{2 n-1}\right]$

Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \dots$

$\therefore \frac{\operatorname{ar}\left(r^{n}-1\right)}{r-1}=\frac{4 \times a\left(r^{n}-1\right)}{r-1}$

$\Rightarrow a r=4 a$

$\Rightarrow r=4$

Thus, the common ratio of the $G.P.$ is $4$

Similar Questions

If the sum of an infinite $GP$ $a, ar, ar^{2}, a r^{3}, \ldots$ is $15$ and the sum of the squares of its each term is $150 ,$ then the sum of $\mathrm{ar}^{2}, \mathrm{ar}^{4}, \mathrm{ar}^{6}, \ldots$ is :

  • [JEE MAIN 2021]

If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then

If the ${5^{th}}$ term of a $G.P.$ is $\frac{1}{3}$ and ${9^{th}}$ term is $\frac{{16}}{{243}}$, then the ${4^{th}}$ term will be

Let the first term $a$ and the common ratio $r$ of a geometric progression be positive integers. If the sum of its squares of first three terms is $33033$, then the sum of these three terms is equal to

  • [JEE MAIN 2023]

If $G$ be the geometric mean of $x$ and $y$, then $\frac{1}{{{G^2} - {x^2}}} + \frac{1}{{{G^2} - {y^2}}} = $