घटनाएँ $E$ और $F$ इस प्रकार हैं कि $P ( E-$ नहीं और $F -$ नहीं $)=0.25,$ बताइए कि $E$ और $F$ परस्पर अपवर्जी हैं या नहीं ?
It is given that $P$ (not $E$ or not $F$ ) $=0.25$
i.e., $P \left( E ^{\prime} \cap F ^{\prime}\right)=0.25$
$\Rightarrow P ( E \cap F )^{\prime} =0.25$ $[ E^{\prime} \cup F^{\prime} =( E \cap F )^{\prime}]$
Now, $P ( E \cap F )=1- P ( E \cap F )^{\prime}$
$\Rightarrow P ( E \cap F )=1-0.25$
$\Rightarrow P ( E \cap F )=0.75 \neq 0$
$\Rightarrow E \cap F \neq \phi$
Thus, $E$ and $F$ are not mutually exclusive.
भारत, वेस्टइंडीज व आस्ट्रेलिया प्रत्येक से $2$ मैच खेलता है। किसी भी मैच में भारत के अंक $0, 1, 2$ अर्जित करने की प्रायिकतायें क्रमश: $0.45, 0.05$ व $0.50$ हैं। यह मानकर कि परिणाम स्वतन्त्र हैं भारत के कम से कम $7$ अंक अर्जित करने की प्रायिकता है
यदि ${A_1},\,{A_2},...{A_n}$ कोई $n$ घटनायें हैं, तो
एक ताश की गड्डी से एक पत्ता निकाला जाता है, उसके बेगम या पान का पत्ता होने की प्रायिकता है
एक परीक्षण (experiment) पर विचार कीजिए जिसमें एक सिक्के को बार बार लगातार उछाला जाता है और जैसे ही दो क्रमागत (consecutive) उछालों का परिणाम (outcome) समान आता है, परीक्षण रोक दिया जाता है। यदि एक याद्धच्छिक उछाल का परिणाम चित्त में (random toss resulting in head) होने की प्रायिकता $\frac{1}{3}$ है, तब परीक्षण के चित्त (head) के साथ रुकने कि प्रायिकता है
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ स्वतन्त्र हों, तो $x= $