घटनाएँ $E$ और $F$ इस प्रकार हैं कि $P ( E-$ नहीं और $F -$ नहीं $)=0.25,$ बताइए कि $E$ और $F$ परस्पर अपवर्जी हैं या नहीं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P$ (not $E$ or not $F$ ) $=0.25$

i.e.,  $P \left( E ^{\prime} \cap F ^{\prime}\right)=0.25$

$\Rightarrow P ( E \cap F )^{\prime} =0.25$              $[ E^{\prime} \cup F^{\prime} =( E \cap F )^{\prime}]$

Now, $P ( E \cap F )=1- P ( E \cap F )^{\prime}$

$\Rightarrow P ( E \cap F )=1-0.25$

$\Rightarrow P ( E \cap F )=0.75 \neq 0$

$\Rightarrow E \cap F \neq \phi$

Thus, $E$ and $F$ are not mutually exclusive.

Similar Questions

$23$ व्यक्तियों की एक समिति, जो एक गोलाकार मेज के चारों ओर बैठते हैं। दो व्यक्तियों के एक साथ बैठने के प्रतिकूल संयोगानुपात हैं

माना समुच्चय $S$ में $n$ अवयव हैं व समुच्चय $S$ के दो उपसमुच्चयों को यदृच्छया चुना जाता है तब $A \cup B = S$ व $A \cap B = \phi $ की प्रायिकता है

यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A + B) = \frac{5}{6},$ $P\,(AB) = \frac{1}{3}\,$ तथा $P\,(\bar A) = \frac{1}{2},$ तो घटनाएँ $A$ तथा $B$ हैं

माना $S =\{1,2,3, \ldots, 2022\}$ है। तब समुच्चय $S$ से यादृच्छया चुनी गई एक संख्या $n$ के लिए $HCF$ $( n , 2022)=1$ होने की प्रायिकता है:

  • [JEE MAIN 2022]

माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-

  • [JEE MAIN 2020]