A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.
There are $9$ discs in all so the total number of possible outcomes is $9 .$
Let the events $A, \,B, \,C$ be defined as
$A:$ 'the disc drawn is red'
$B:$ 'the disc drawn is yellow'
$C:$ 'the disc drawn is blue'.
The event 'either red or blue' may be described by the set $'A$ or $C'$
since, $A$ and $C$ are mutually exclusive events, we have
$P ( A \text { or } C )= P ( A \cup C )$ $= P ( A )+ P ( C )=\frac{4}{9}+\frac{1}{3}=\frac{7}{9}$
If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)
Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is
One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is
Probability that a student will succeed in $IIT$ entrance test is $0.2$ and that he will succeed in Roorkee entrance test is $0.5$. If the probability that he will be successful at both the places is $0.3$, then the probability that he does not succeed at both the places is
Let $A$ and $B $ be two events such that $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are