A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

There are $9$ discs in all so the total number of possible outcomes is $9 .$

Let the events $A, \,B, \,C$ be defined as

$A:$ 'the disc drawn is red'

$B:$ 'the disc drawn is yellow'

$C:$ 'the disc drawn is blue'.

The event 'either red or blue' may be described by the set $'A$ or $C'$

since, $A$ and $C$ are mutually exclusive events, we have

$P ( A \text { or } C )= P ( A \cup C )$ $= P ( A )+ P ( C )=\frac{4}{9}+\frac{1}{3}=\frac{7}{9}$

Similar Questions

If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)

Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is

One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is

Probability that a student will succeed in $IIT$ entrance test is $0.2$ and that he will succeed in Roorkee entrance test is $0.5$. If the probability that he will be successful at both the places is $0.3$, then the probability that he does not succeed at both the places is

Let $A$ and $B $ be two events such that  $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are

  • [AIEEE 2005]