- Home
- Standard 11
- Physics
પૃથ્વીની સપાટી પરથી શિરોલંબ દિશામાં પદાર્થને અનંત અંતરે પહોચાડવા માટે જરૂરી વેગથી ફેકવામાં આવે છે. તે $h$ ઊંચાઈ સુધી પહોંચવા માટે કેટલો સમય લેશે?
$\frac{1}{3} \sqrt{\frac{2 R_{e}}{g}}\left[\left(1+\frac{h}{R_{e}}\right)^{3 / 2}-1\right]$
$\sqrt{\frac{2 R_{e}}{g}}\left[\left(1+\frac{h}{R_{e}}\right)^{3 / 2}-1\right]$
$\frac{1}{3} \sqrt{\frac{R_{e}}{g}}\left[\left(1+\frac{h}{R_{e}}\right)^{3 / 2}-1\right]$
$\sqrt{\frac{R_{e}}{g}}\left[\left(1+\frac{h}{R_{e}}\right)^{3 / 2}-1\right]$
Solution

Applying energy conservation from $(1)$ to $(2)$
$\frac{1}{2} m_{.}\left(\frac{2 G M}{R_{e}}\right)-\frac{G M m}{R_{e}}=\frac{1}{2} m v^{2}-\frac{G M m}{R+r}$
$\Rightarrow \frac{1}{2} m v^{2}=\frac{G M m}{R+r}$
$\Rightarrow v=\sqrt{\frac{2 G M}{R+r}}=\frac{d r}{d t}$
$\Rightarrow \sqrt{2 G M} \int_{0}^{t} d t=\int_{R_{e}}^{R_{e}+h}(\sqrt{R+r}) d r$
$\sqrt{2 G M} \cdot t=\frac{2}{3}\left[(R+r)^{3 / 2}\right]_{R_{e}}^{R_{e}+h}$
$t=\frac{2}{3} \sqrt{\frac{R_{e}^{3}}{2 G M}}\left[\left(1+\frac{h}{R_{e}}\right)^{3 / 2}-1\right]$
$\frac{G M}{R_{e}^{2}}=g$
$t=\frac{1}{3} \sqrt{\frac{2 R_{e}}{g}}\left[\left(1+\frac{h}{R_{e}}\right)^{3 / 2}-1\right]$