5.Work, Energy, Power and Collision
normal

A body of mass $m$ is projected from ground with speed $u$ at an angle $\theta$ with horizontal. The power delivered by gravity to it at half of maximum height from ground is

A

$\frac{m g u \cos \theta}{\sqrt{2}}$

B

$\frac{m g u \sin \theta}{\sqrt{2}}$

C

$\frac{m g u \cos (90+\theta)}{\sqrt{2}}$

D

Both $(b)$ and $(c)$

Solution

(d)

$H_{\max }=\frac{u^2 \sin ^2 \theta}{2 g}$

$v_y^2=(u \sin \theta)^2-\frac{2 g u^2 \sin ^2 \theta}{4 g}$

$v_y=\frac{u \sin \theta}{\sqrt{2}}$

At point $A$,

$\vec{P}=\vec{F} \cdot \vec{V}=(m g)\left(\frac{u \sin \theta}{\sqrt{2}}\right) \cos \pi=\frac{-m g u \sin \theta}{\sqrt{2}}$

At point $B$,

$\vec{P}=\frac{+u m g \sin \theta}{\sqrt{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.