એક સિક્કો ઉછાળો. જો તે છાપ બતાવે તો આપણે થેલામાંથી એક દડો કાઢીશું. તે થેલામાં $3$ વાદળી અને $4$ સફેદ દડા છે. જો તે કાંટો બતાવે તો આપણે પાસો ઉછાળીશું. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.
Let us denote blue balls by $B _{1}, \,B _{2},\,B _{3}$ and the white balls by $W _{1},\,W _{2}, \,W _{3}, \,W _{4}$.
Then a sample space of the experiment is
$S =\{ HB _{1}, \,HB _{2},\, HB _{3}, \,HW _{1}, \,HW _{2}$, $HW _{3}, \,HW _{4}$ , $T1,\, T 2,\, T 3$, $T 4,\, T 5,\, T 6\}$
Here $HB_i$ means head on the coin and ball $B_i$ is drawn, $HW_i$ means head on the coin and ball $W _{i}$ is drawn. Similarly, $Ti$ means tail on the coin and the number $i$ on the die.
$00, 01, 02, 03, ...47, 49$ નંબરોવાળી $50$ ટિકિટોમાંથી જેના આંકડાઓનો ગુણાકાર શૂન્ય થતો હોય તેવી ટિકિટો પસંદ કરવાના યાર્દચ્છિક પ્રયોગમાં જેના આંકડાઓનો સરવાળો $8$ થતો હોય તેવી ટિકિટો પસંદ થવાની ઘટનાની સંભાવના ....છે.
સમષ્તુફલકના ખૂણાઓ $1, 2, 3, 4$ થી અંકિત કરેલા છે. આવા ત્રણ સમષ્તુફલકને એક સાથે ફેંકતા અંકોનો સરવાળો $5$ થાય તેની સંભાવના …….. છે.
ત્રણ વ્યકિતઓને ત્રણ પત્ર લખી તેમના સરનામા લખેલા કવરમાં યાર્દચ્છિક રીતે મૂકી દેતાં બધા પત્રો સાચા કવરમાં મૂકાયેલ હોય તેની સંભાવના .......... છે.
કાગળની ચાર ચબરખી પર $1, 2, 3$ અને $4$ સંખ્યાઓ લખી છે. આ ચબરખીને એક ડબામાં મૂકીને સારી રીતે મિશ્ર કરી દીધી છે. એક વ્યક્તિ ડબામાંથી પાછી મૂકયા વગર એક પછી એક બે ચબરખીઓ કાઢે છે. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.
સરખી રીતે ચીપેલાં $52$ પત્તાંની એક થોકડીમાંથી યાદચ્છિક રીતે એક પતું ખેંચવામાં આવે છે. પતું ચોકટનું ન હોય તેની સંભાવના મેળવો