ઉપવલય $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$ ની નાભી અને અતિવલય $\frac{ x ^{2}}{144}-\frac{ y ^{2}}{\alpha}=\frac{1}{25}$ નાભી  સંપાતી છે તો અતિવલયના નાભીલંભની લંબાઈ મેળવો.

  • [JEE MAIN 2022]
  • A

    $\frac{32}{9}$

  • B

    $\frac{18}{5}$

  • C

    $\frac{27}{4}$

  • D

    $\frac{27}{10}$

Similar Questions

અતિવલય  $x^2 - 4y^2 = 36 $ ના સ્પર્શકનું સમીકરણ શોધો. જે રેખા  $x - y + 4 = 0 $ ને લંબ છે.

કોઈ એક અતિવલય, એ ઉપવલય $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ ની નાભિઓમાંથી પસાર થાય છે અને તેની મુખ્ય અક્ષ અને અનુબદ્ધ અક્ષ અનુક્રમે ઉપવલયની મુખ્ય અક્ષ અને ગૌણ અક્ષ સાથે એકાકાર છે. જો તેમની ઉત્કેન્દ્રતાઓનો ગુણાકાર એક હોય, તો તે અતિવલયનું સમીકરણ ....... થશે.

  • [JEE MAIN 2021]

ધારોકે $H: \frac{-x^2}{a^2}+\frac{y^2}{b^2}=1$ અતિવલય છે, જેની ઉત્કેન્દ્રતા $\sqrt{3}$ અને નાભીલંબની લંબાઈ $4 \sqrt{3}$ છે. ધારોકે $(\alpha, 6), \alpha>0$ એ $H$ પર છે. જો બિંદુ ( $\alpha, 6)$ ના નાભ્યાંતરોનો ગુણાકાર $\beta$ હોય, તો $\alpha^2+\beta=$............

  • [JEE MAIN 2024]

ઉત્કેન્દ્ર્તા $\mathrm{e}$ વાળા એક અતિવલયનાં નાભિલંબની લંબાઈ તથા નિયામિકાઓ અનુક્મમે $9$ અને $x= \pm \frac{4}{\sqrt{3}}$ છે. ધારો કે રેખા $y-\sqrt{3} x+\sqrt{3}=0$ આ અતિવલયને $\left(x_0, y_0\right)$ માં સ્પર્શ છે. જે બિંદુ $\left(x_0, y_0\right)$ ના નાભ્યાંતરોનો ગુણાકાર $\mathrm{m}$ હોય, તો $4 \mathrm{e}^2+\mathrm{m}=$ ........... 

  • [JEE MAIN 2024]

$0 < \theta  < \frac{\pi }{2}$.જો અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ ની ઉત્કેન્દ્રતા $2$ કર્તા વધારે હોય તો નાભીલંબની મહતમ લંબાઈ ક્યાં અંતરાલમાં મળે,

  • [JEE MAIN 2019]