2. Electric Potential and Capacitance
hard

$C_1$ કેપેસિટરને $V_0$ વોલ્ટેજથી ચાર્જ કરતાં તેની ઊર્જા $U_0$ છે.હવે,આ કેપેસિટર સાથે વિદ્યુતભાર રહિત કેપેસિટર $C_2$ સામંતરમાં જોડવાથી તે કેટલી ઉર્જા ગુમાવશે?

A

$\frac{{{C_2}}}{{{C_1} + {C_2}}}{U_0}$

B

$\frac{{{C_1}}}{{{C_1} + {C_2}}}{U_0}$

C

$\left( {\frac{{{C_1} - {C_2}}}{{{C_1} + {C_2}}}} \right){U_0}$

D

$\frac{{{C_1}{C_2}}}{{2({C_1} + {C_2})}}{U_0}$

Solution

(a) Loss of energy during sharing $=$ $\frac{{{C_1}{C_2}{{({V_1} – {V_2})}^2}}}{{2({C_1} + {C_2})}}$
In the equation, put ${V_2} = 0,\;{V_1} = {V_0}$
 Loss of energy $ = \frac{{{C_1}{C_2}V_0^2}}{{2({C_1} + {C_2})}}$
$ = \frac{{{C_2}{U_0}}}{{{C_1} + {C_2}}}$              $\left[ {\;{U_0} = \frac{1}{2}{C_1}V_0^2} \right]$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.