8. Sequences and Series
hard

दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है 

A

$8$

B

$16$

C

$20$

D

$24$

(JEE MAIN-2014)

Solution

Let $a$ be the frist term and $d$ be the common difference of given $A.P.$

Second term,$a+d=12$       …..$(1)$

Sum of frist nine terms,

${S_9} = \frac{9}{2}\left( {2a + 8d} \right) = 9\left( {a + 4d} \right)$

Given that ${S_9}$ is more than $200$ and less than $200$

$ \Rightarrow 200 < {S_9} < 220$

$ \Rightarrow 200 < 9\left( {a + 4d} \right) < 220$

$ \Rightarrow 200 < 9\left( {a + d + 3d} \right) < 220$

Putting value of $(a+d)$ from equation $(1)$

$200 < 9\left( {12 + 3d} \right) < 220$

$ \Rightarrow 200 < 108 + 27d < 220$

$ \Rightarrow 200 – 108 < 108 + 27d – 108 < 220 – 108$

$ \Rightarrow 92 < 27d < 112$

Possible value of $d$ is $4$

$27 \times 4 = 108$

Thus, $92<108<112$

Putting value of $d$ in equation $(1)$

$a+d=12$

$a=12-4=8$

${4^{th}}$ term $ = a + 3d = 8 + 3 \times 4 = 20$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.