एक द्रव्यमान $m$ को ${K_1}$ व ${K_2}$ बल नियतांक वाली दो स्प्रिंगों से अलग-अलग लटकाने पर इनकी सरल आवर्त गतियों के आवर्तकाल क्रमश: ${t_1}$ व ${t_2}$ हैं। यदि उसी द्रव्यमान $m$ को चित्रानुसार दोनों स्प्रिंगों से लटकाया जाये तो इसकी सरल आवर्त गति के आवर्तकाल $t$ के लिए सही सम्बन्ध है

94-36

  • [AIPMT 2002]
  • A

    $t = {t_1} + {t_2}$

  • B

    $t = \frac{{{t_1}.{t_2}}}{{{t_1} + {t_2}}}$

  • C

    ${t^2} = {t_1}^2 + {t_2}^2$

  • D

    ${t^{ - 2}} = {t_1}^{ - 2} + {t_2}^{ - 2}$

Similar Questions

$l$ लम्बाई की एक स्प्रिंग् का बल-स्थिरांक $k$ है। जब इस पर भार $W$ लटकाया जाता है तो इसकी लम्बाई में वृद्धि $x$ होती है। यदि स्प्रिंग् को दो बराबर टुकड़ों में काटकर तथा उन्हें समान्तर क्रम में रखकर उन पर वही भार $W$ लटकाया जाये तो अब वृद्धि होगी

एक स्प्रिंग $10$ न्यूटन के बल से $5$ से.मी. खिंची होती है। जब $2$ कि.ग्रा. द्रव्यमान को इससे लटकाया जाता है, तो दोलन का आवर्तकाल होता है :  (सेकण्ड में)

  • [NEET 2021]

द्रव्यमान $1 \; kg$ एवं $4 \; kg$ की दो वस्तुऐं एक ऊर्ध्वाधर कमानी द्वारा चित्र के अनुसार जोड़ी गयी हैं। अल्पतर द्रव्यमान कोणीय आवृत्ति $25 \; rad / s$ एवं आयाम $1.6 \; cm$ की सरल आवर्त गति कर रहा है जबकि बृहत्तर द्रव्यमान स्थिर रहता है। निकाय द्वारा फर्श पर लगाया गया अधिकतम बल है ( $g=10 \; ms ^{-2}$ लें).

  • [JEE MAIN 2014]

एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$

  • [JEE MAIN 2017]

$M_1$और $M_2$ दो द्रव्यमान $K$ नियतांक वाली किसी द्रव्यमान विहीन स्प्रिंग से चित्र में दिखाये अनुसार लटके हैं। संतुलन की अवस्था में, निकाय को प्रभावित न करके यदि $M_1$ को धीरे से हटा लिया जाये तो दोलन का आयाम होगा