एक भौतिक राशि $P$ निम्न संबंध द्वारा परिभाषित की जाती है।
$P=a^{1 / 2} b^{2} c^{3} d^{-4}$
यदि $a , b , c$ और $d$ के मापन में सापेक्ष त्रुटि क्रमशः $2 \%, 1 \%, 3 \%$ व $5 \%$ हो तो $P$ में सापेक्ष त्रुटि होगी
$8$
$12$
$32$
$25$
एक कण $s$ दूरी $t$ समय में निम्न प्रकार से पूरी करता है $s=u t-\frac{1}{2} g t^2$ कण का प्रारम्भिक वेग $u=1.11 \pm 0.01 \,m / s$ मापा जाता है और प्रयोग में लगा समय अंतराल $t=1.01 \pm 0.1 \,s$ है । यदि त्वरण का मान $g=9.88 {\pm} 0.1 \,m / s ^2$ है, तो इन मापनों के साथ विद्यार्थी कुल दूरी का ........ $m$ मान आकलित (report) करेगा?
एक गोले की त्रिज्या $(7.50 \pm 0.85) \,cm$ मापी गई है। माना कि इसके आयतन में प्रतिशत त्रुटि $x$ है। यहाँ $x$ का मान निकटतम पूर्णांक में $......$ होगा।
एक शंकु की विमायें अल्पत्मांक $2 \ mm$ के एक पैमाने से मापे जाने पर उसके आधार का व्यास तथा ऊँचाई, दोनों, $20.0 \ cm$ पाये जाते हैं। इस शंकु का आयतन ज्ञात करने में अधिकतम प्रतिशत त्रुटि का मान .......... होगा|
गोले की त्रिज्या $(5.3 \pm 0.1) \,cm$ है तो आयतन में प्रतिशत त्रुटि होगी
किसी प्रयोग में सरल लोलक का आवर्तकाल क्रमश: $2.63\, s, 2.56 \,s, 2.42 \,s, 2.71 \,s$ तथा $2.80 \,s$ मापा गया तो औसत निरपेक्ष त्रुटि ......... $s$ होगी