एक भौतिक राशि $P$ निम्न संबंध द्वारा परिभाषित की जाती है।
$P=a^{1 / 2} b^{2} c^{3} d^{-4}$
यदि $a , b , c$ और $d$ के मापन में सापेक्ष त्रुटि क्रमशः $2 \%, 1 \%, 3 \%$ व $5 \%$ हो तो $P$ में सापेक्ष त्रुटि होगी
$8$
$12$
$32$
$25$
किसी भौतिक राशि ' $y$ ' को नीचे दिए गए सूत्र द्वारा निरूपित किया गया है। $y = m ^{2} r ^{-4} g ^{ x } l^{-\frac{3}{2}}$ यदि $y , m$, r. $l$ और $g$ में त्रटि-प्रतिशतता क्रमश: $18,1,0.5,4$ और $p$ है, तो $x$ और $p$ के मान होंगे?
एक प्रकाशीय बेंच में एक $1.5 m$ लंबा पैमाना है जिसका प्रत्येक $cm$ चार बराबर भागों में विभाजित है। एक पतले उत्तल लेंस की फोकस दूरी के मापन के दौरान लेंस तथा वस्तु पिन को पैमाने पर क्रमशः $75 cm$ तथा $45 cm$ के चिन्हों पर रखा जाता है। लेंस के दूसरी तरफ वस्तु पिन का प्रतिबिम्ब $135 cm$ चिन्ह पर रखी प्रतिबिम्ब पिन से मिलता है। इस प्रयोग में लेंस के फोकस दूरी के मापन में प्रतिशत त्रुटि. . . . . है।
तीन विद्यार्थी $S_{1}, S_{2}$ तथा $S_{3}$ गुरूत्वीय त्वरण $( g )$ के मापन के लिये सरल लोलक की सहायता से एक प्रयोग करते है। वे अलग-अलग लम्बाई के लोलको का उपयोग करते है तथा दोलनों की भिन्न-भिन्न संख्या के लिये समय दर्ज करते है। ये प्रेक्षण निम्न तालिका में दिये गये है
Student No. | Length of pendulum $(cm)$ | No. of oscillations $(n)$ | Total time for oscillations | Time period $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(लम्बाई का अल्पतमांक $=0.1 \,m$ समय का अल्पतमांक $=0.1\, s$ )
यदि $E _{1}, E _{2}$ तथा $E _{3}$ क्रमशः विद्यार्थी $1,2$ व $3$ के लिये ' $g$ ' में प्रतिशत त्रुटि हो तो किस विद्यार्थी द्वारा न्यूनतम प्रतिशत त्रुटि प्राप्त की गयी?
एक भौतिक राशि $Q$ सम्बन्ध $Q=\frac{\mathrm{a}^4 \mathrm{~b}^3}{\mathrm{c}^2}$ के अनुसार $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ राशियों पर निर्भर करती है। $\mathrm{a}, \mathrm{b}$ तथा $\mathrm{c}$ में प्रतिशत त्रुटियों क्रमशः $3 \%, 4 \%$ तथा $5 \%$ है। तब $\mathrm{Q}$ में प्रतिशत त्रुटि है :
यदि सभी स्वतंत्र राशियों (independent quantities) की मापन त्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की त्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को त्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी
$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$
उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।
($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है $(\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी ?
$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$
($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है $\mid$ यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, है
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$