1.Units, Dimensions and Measurement
medium

એક ભૌતિકરાશિ નો માપન યોગ્ય ચાર રાશિઓ $a, b, c$ અને $d$ સાથેનો સંબંધ આ મુજબ છે. $P=\frac{a^{2} b^{2}}{(\sqrt{c} d)}$, $a, b, c$ અને $D$ માં પ્રતિશત ત્રુટિ અનુક્રમે $1 \%, 3 \%, 4 \%$  અને $2 \%$ છે, તો $P$ માં પ્રતિશત ત્રુટિ શોધો. જો ઉપર્યુક્ત સંબંધનો ઉપયોગ કરીને ગણતરી કરતાં $P$ નું મૂલ્ય $3.763$ મળતું હોય, તો તમે આ પરિણામને કયા મૂલ્ય સુધી $Round \,off$ કરશો ?

Option A
Option B
Option C
Option D

Solution

$P=\frac{a^{3} b^{2}}{(\sqrt{c} d)}$

$\frac{\Delta P}{P}=\frac{3 \Delta a}{a}+\frac{2 \Delta b}{b}+\frac{1}{2} \frac{\Delta c}{c}+\frac{\Delta d}{d}$

$\left(\frac{\Delta P}{P} \times 100\right) \%$$=\left(3 \times \frac{\Delta a}{a} \times 100+2 \times \frac{\Delta b}{b} \times 100+\frac{1}{2} \times \frac{\Delta c}{c} \times 100+\frac{\Delta d}{d} \times 100\right) \%$

$=3 \times 1+2 \times 3+\frac{1}{2} \times 4+2$

$=3+6+2+2=13 \%$

Percentage error in $P=13 \%$

Value of $P$ is given as $3.763$

By rounding off the given value to the first decimal place, we get $P=3.8$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.