ત્રણ વિદ્યાર્થી $S_{1}, S_{2}$ અને $S_{3}$ એ સાદા લોલકની મદદથી ગુરુત્વપ્રવેગ $(g)$ માપવાનો પ્રયોગ કરે છે. તે જુદી જુદી લંબાઈના લોલક વડે જુદા જુદા દોલનોની સંખ્યા માટેનો સમય નોંધે છે. આ અવલોકનો નીચેના ટેબલમાં આપેલા છે. 

વિદ્યાર્થીની સંખ્યા  લોલકની લંબાઈ $(cm)$ દોલનોની સંખ્યા $(n)$ દોલનો માટેનો કુલ સમય આવર્તકાળ $(s)$
$1.$ $64.0$ $8$ $128.0$ $16.0$
$2.$ $64.0$ $4$ $64.0$ $16.0$
$3.$ $20.0$ $4$ $36.0$ $9.0$

(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )

જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?

  • [JEE MAIN 2021]
  • A

    $3$

  • B

    $2$

  • C

    $1$

  • D

    બધામાં સમાન

Similar Questions

નીચેનાં વિધાનો ખરા છે કે ખોટાં તે જણાવો :

$(a)$ કોઈ રાશિને એકમ હોઈ શકે તેમ છતાં પરિમાણરહિત હોય છે.

$(b)$ આઘાત અને ઊર્જા પ્રચલનના એકમ સમાન હોય. 

$(c)$ માપન કરતાં સાધનની લઘુતમ માપશક્તિ જેટલી દરેક માપનમાં નિરપેક્ષ ત્રુટિ હોય. 

નિરપેક્ષ ત્રુટિ, સરેરાશ નિરપેક્ષ ત્રુટિ, સાપેક્ષ ત્રુટિ અને પ્રતિશત ત્રુટિ સમજાવો.

આપણે અવ્યવસ્થિત ત્રુટિ ને શેના દ્વારા ધટાડી શકીએ છીએ?

ત્રુટિઓના ગુણાકાર કે ભાગાકારની અંતિમ પરિણામ પર થતી અસર મેળવો.

જો $x=10.0 \pm 0.1$ અને $y=10.0 \pm 0.1$, તો $2 x-2 y$ કોના બરાબર થાય ?