- Home
- Standard 12
- Physics
एक स्त्रोत $S_{1}$ प्रति सेकंड $5000\;\mathring A$ तरंगदैर्ध्य के $10^{15}$ फोटॉन उत्पन्न करता है। एक अन्य स्त्रोत $S_{2} .5100 \;\mathring A$ तरंगदैर्ध्य के $1.02 \times 10^{15}$ फोटॉन प्रति सेकण्ड उत्पन्न करता है, तो $(S_{2}$ की शक्ति)/$(S_{1}$ की शक्ति) का मान होगा
$1$
$1.02$
$1.04$
$0.98$
Solution
For a source $S_{1}$
Wavelength, $\lambda_{1}=5000 \,\,{\mathop {\text{A}}\limits^o }$
Number of photons emitted per second, $N_{1}=10^{15}$
Energy of each photon, $E_{1}=\frac{h c}{\lambda_{1}}$
Power of source $S_{1}, P_{1}=E_{1} N_{1}=\frac{N_{1} h c}{\lambda_{1}}$
For a source $S_{2}$
Wavelength, $\lambda_{2}=5100\,\,{\mathop {\text{A}}\limits^o }$
Number of photons emitted per second,
$N_{2}=1.02 \times 10^{15}$
Energy of each photon, $E_{2}=\frac{h c}{\lambda_{2}}$
Power of source $S_{2},\,\,P_{2}=N_{2} E_{2}=\frac{N_{2} h c}{\lambda_{2}}$
$\therefore \,\,\frac{{{\text{ Power of}}\,{\text{ }}{S_2}}}{{{\text{ Power of }}\,{S_1}}} = \frac{{{P_2}}}{{{P_1}}}$ $ = \frac{{\frac{{{N_2}hc}}{{{\lambda _2}}}}}{{\frac{{{N_1}hc}}{{{\lambda _1}}}}} = \frac{{{N_2}{\lambda _1}}}{{{N_1}{\lambda _2}}}$
$ = \frac{{(1.02 \times {{10}^{15}}{\text{ photons/s) }} \times (5000{\mkern 1mu} {\mkern 1mu} \mathop {\text{A}}\limits^o )}}{{({{10}^{15}}{\text{ photons/s) }} \times (5100{\mkern 1mu} {\mkern 1mu} \mathop {\text{A}}\limits^o )}}$ $ = \frac{{51}}{{51}} = 1$