- Home
- Standard 11
- Physics
एक आदर्श गैस, जिसका घनत्व $\rho=0.2 kg m ^{-3}$ है, एक $h$ ऊँचाई की चिमनी के निचले सिरे से $\alpha=0.8 kg s ^{-1}$ की दर से प्रवेश करती है और ऊपर के सिरे से बाहर निकलती है, जैसा कि चित्र में दर्शाया गया है। चिमनी का अनुप्रस्थ (cross-sectional) क्षेत्रफल निचले सिरे पर $A_1=0.1 m ^2$ और उपरी सिरे पर $A_2=0.4 m ^2$ है। गैस का दाब व ताप निचले सिरे पर क्रमशः $600 Pa$ और $300 K$ है जबकि ऊपरी सिरे पर गैस का ताप $150 K$ है। चिमनी ऊष्मा कुचालक (heat insulated) है ताकि गैस रूधोष्म प्रक्रम (adiabatic process) से प्रसारित (expand) होती है। $g=10 ms ^{-2}$ तथा गैस विशिष्ट ऊष्माओं का अनुपात (ratio of specific heats) $\gamma=2$ मान लें। वायुमंडलीय (atmospheric) दाब नगण्य है।
निम्न में से कौन सा (से) कथन सही है (हैं)।

चिमनी के ऊपरी सिरे पर गैस का दबाव $300 Pa$ है।
चिमनी के निचले सिरे पर गैस की गति $40 ms ^{-1}$ तथा ऊपरी सिरे पर $20 ms ^{-1}$ है।
चिमनी की ऊँचाई $590 m$ है।
ऊपरी सिरे पर गैस का घनत्व $0.05 kg m ^{-3}$ है।
Solution

$\frac{ dm }{ dt }=\rho_1 A _1 v _1=0.8 kg / sA$
$v _1=\frac{0.8}{0.2 \times 0.1}=40 m / s$
$g=10 m / s ^2$
$\gamma=2$
Gas undergoes adiabatic expansion,
$p ^{1 \gamma} T ^\gamma=\text { Constant }$
$\frac{ P _2}{ P _1}=\left(\frac{ T _1}{ T _2}\right)^{\frac{ T }{1-\gamma}}$
$P _2=\left(\frac{300}{150}\right)^{\frac{2}{-1}} \times 600$
$P _2=\frac{600}{4}=150 Pa$
Now $\rho=\frac{ PM }{ RT } \Rightarrow \rho \propto \frac{ P }{ T }$
$\frac{\rho_1}{\rho_2}=\left(\frac{ P _1}{ P _2}\right)\left(\frac{ T _1}{ T _2}\right)=\left(\frac{150}{600}\right)\left(\frac{300}{150}\right)=\frac{1}{2}$
$\rho_2=\frac{\rho_1}{2}=0.1 kg / m ^3$
$\text { Now } \rho_2 A _2 V _2=0.8 \Rightarrow v _2=\frac{0.8}{0.1 \times 0.4}=20 m / s$
$\text { Now } W _{\text {on gas }}=\Delta K +\Delta U +\text { (Internal energy) }$
$P _1 A _1 \Delta x _1- P _2 A _2 \Delta x _2=\frac{1}{2} \Delta mV_{2 } ^ { 2 } -\frac{1}{2} \Delta mV V _1^2+\Delta mgh +\frac{ f }{2}\left( P _2 \Delta V _2- P _1 \Delta V _1\right)$
$\Rightarrow 2 P _1 \frac{\Delta V _1}{\Delta m }-2 P _2 \frac{\Delta V _2}{\Delta m }=\frac{ V _2^2- V _1^2}{2}+ gh$
$\Rightarrow \frac{2 \times 600}{0.2}-\frac{2 \times 150}{0.1}=\frac{20^2-40^2}{2}+10 h$
$h =360 m$