4-1.Complex numbers
easy

$\frac{{1 + i}}{{1 - i}}$के कोणांक तथा मापांक क्रमश: हैं

A

$\frac{{ - \pi }}{2}$तथा $1$

B

$\frac{\pi }{2}$ तथा $\sqrt 2$ 

C

$0$ तथा $\sqrt 2 $

D

 $\frac{\pi }{2}$ तथा $1$

Solution

(d) $\frac{{1 + i}}{{1 – i}} = \frac{{1 + i}}{{1 – i}} \times \frac{{1 + i}}{{1 + i}} = \frac{{{{(1 + i)}^2}}}{2}$

अब $1 + i = r(\cos \theta  + i\sin \theta ) \Rightarrow r\cos \theta  = 1,r\sin \theta  = 1$

 $⇒ r = \sqrt 2 ,\theta  = \pi /4$

 $\therefore $  $1 + i = \sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)$

$ \Rightarrow \,$ $\frac{1}{2}\,{(1 + i)^2} = \frac{1}{2}\,.\,2\,{\left( {\cos \frac{\pi }{4} + i\,\sin \frac{\pi }{4}} \right)^2}$

डी मोयवर प्रमेय से, $\left( {\cos \frac{\pi }{2} + i\sin \frac{\pi }{2}} \right)$

अत: कोणांक $\frac{\pi }{2}$ एवं मापांक $1$ है

 ट्रिक : $arg{\rm{ }}\left( {\frac{{1 + i}}{{1 – i}}} \right) = arg(1 + i) – arg(1 – i)$

  $ = {45^o} – ( – {45^o}) = {90^o}$

  $\left| {\,\frac{{1 + i}}{{1 – i}}\,} \right|\, = \frac{{\left| {\,1 + i\,} \right|}}{{\left| {\,1 – i\,} \right|}}\, = \frac{{\sqrt 2 }}{{\sqrt 2 }} = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.