$\Delta ACB$ लीजिए जिसका कोण $C$ समकोण है जिसमें $AB =29$ इकाई $, BC =21$ इकाई और $\angle ABC =\theta$ $($ देखिए आकृति $)$ हैं तो निम्नलिखित के मान ज्ञात कीजिए।

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$.

1043-3

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $\Delta ACB ,$ we have

$AC=\sqrt{ AB ^{2}- BC ^{2}}=\sqrt{(29)^{2}-(21)^{2}}$

$=\sqrt{(29-21)(29+21)}=\sqrt{(8)(50)}=\sqrt{400}=20$ units

So, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}, \cos \theta=\frac{B C}{A B}=\frac{21}{29}$

Now,

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{20}{29}\right)^{2}+\left(\frac{21}{29}\right)^{2}=\frac{20^{2}+21^{2}}{29^{2}}=\frac{400+441}{841}=1$

and

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}=\frac{(21+20)(21-20)}{29^{2}}=\frac{41}{841}$

Similar Questions

बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।

$\theta$ के सभी मानों पर $\sin \theta=\cos \theta$

निम्नलिखित के मान निकालिए :

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

यदि $15 \cot A =8$ हो तो $\sin\, A$ और $sec\, A$ का मान ज्ञात कीजिए।

$\sin 2 A =2 \sin A$ तब सत्य होता है, जबकि $A$ बराबर है :

$\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$ का मान निकालिए