Consider the statement : "For an integer $n$, if $n ^{3}-1$ is even, then $n$ is odd." The contrapositive statement of this statement is
For an integer $n ,$ if $n ^{3}-1$ is not even, then $n$ is not odd
For an integer $n,$ if $n$ is even, then $n^{3}-1$ is odd.
For an integer $n ,$ if $n$ is odd, then $n ^{3}-1$ is even.
For an integer $n ,$ if $n$ is even, then $n ^{3}-1$ is even.
Contrapositive of the statement:
'If a function $f$ is differentiable at $a$, then it is also continuous at $a$', is
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.