यदि $\angle B$ और $\angle Q$ ऐसे न्यूनकोण हों जिससे कि $\sin B =\sin Q ,$ तो सिद्ध कीजिए कि $\angle B =\angle Q$
Let us consider two right triangles $ABC$ and $PQR$ where $\sin B=\sin Q$(see $Fig.$)
We have $\quad \sin B =\frac{A C}{A B}$
and $\sin Q =\frac{ PR }{ PQ }$
Then $\quad \frac{A C}{A B}=\frac{P R}{P Q}$
Therefore, $\frac{A C}{P R}=\frac{A B}{P Q}=k,$ say ...........$(1)$
Now, using Pythagoras theorem,
$BC =\sqrt{ AB ^{2}- AC ^{2}}$
and $QR =\sqrt{ PQ ^{2}- PR ^{2}}$
So, $\quad \frac{ BC }{ QR }=\frac{\sqrt{ AB ^{2}- AC ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=\frac{\sqrt{k^{2} PQ ^{2}-k^{2} PR ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=\frac{k \sqrt{ PQ ^{2}- PR ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=k$ ..........$(2)$
From $( 1 )$ and $( 2 ),$ we have
$\frac{A C}{P R}=\frac{A B}{P Q}=\frac{B C}{Q R}$
Then,$\Delta ACB \sim \Delta PRQ$ and therefore, $\angle B =\angle Q$.
$\sin 67^{\circ}+\cos 75^{\circ}$ को $0^{\circ}$ और $45^{\circ}$ के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
मान निकालिए :
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$