यदि $\angle B$ और $\angle Q$ ऐसे न्यूनकोण हों जिससे कि $\sin B =\sin Q ,$ तो सिद्ध कीजिए कि $\angle B =\angle Q$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let us consider two right triangles $ABC$ and $PQR$ where $\sin B=\sin Q$(see $Fig.$)

We have $\quad \sin B =\frac{A C}{A B}$

and $\sin Q =\frac{ PR }{ PQ }$

Then $\quad \frac{A C}{A B}=\frac{P R}{P Q}$

Therefore, $\frac{A C}{P R}=\frac{A B}{P Q}=k,$ say ...........$(1)$

Now, using Pythagoras theorem,

$BC =\sqrt{ AB ^{2}- AC ^{2}}$

and $QR =\sqrt{ PQ ^{2}- PR ^{2}}$

So, $\quad \frac{ BC }{ QR }=\frac{\sqrt{ AB ^{2}- AC ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=\frac{\sqrt{k^{2} PQ ^{2}-k^{2} PR ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=\frac{k \sqrt{ PQ ^{2}- PR ^{2}}}{\sqrt{ PQ ^{2}- PR ^{2}}}=k$ ..........$(2)$

From $( 1 )$ and $( 2 ),$ we have

$\frac{A C}{P R}=\frac{A B}{P Q}=\frac{B C}{Q R}$

Then,$\Delta ACB \sim \Delta PRQ$ and therefore, $\angle B =\angle Q$.

1043-s2

Similar Questions

$\sin 67^{\circ}+\cos 75^{\circ}$ को $0^{\circ}$ और $45^{\circ}$ के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

मान निकालिए :

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$