निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

$L.H.S.=(\operatorname{cosec} \theta-\cot \theta)^{2}$

$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$

$=\frac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$

$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta}$

$=$ $R.H.S.$

Similar Questions

$\sin 2 A =2 \sin A$ तब सत्य होता है, जबकि $A$ बराबर है :

निम्नलिखित का मान निकालिए:

$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$

मान निकालिए :

$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$

एक समकोण त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =1$ तो सत्यापित कीजिए कि $2 \sin A \cos A=1$

यदि $\angle B$ और $\angle Q$ ऐसे न्यूनकोण हों जिससे कि $\sin B =\sin Q ,$ तो सिद्ध कीजिए कि $\angle B =\angle Q$