एक स्प्रिंग से लटकाये गये किसी कण का आवर्तकाल $T$ है। यदि स्प्रिंग को चार बराबर भागों में काटकर उसी द्रव्यमान को किसी एक भाग से लटका दें तो नया आवर्तकाल होगा
$T$
$\frac{T}{2}$
$2 T$
$\frac{T}{4}$
आरेख में दर्शाए अनुसार द्रव्यमान $M$ का कोई पिण्ड दो द्रव्यमानहीन कमानियों के बीच किसी चिकने आनत तल पर रखा है। कमानियों के मुक्त सिरे दढ़ सपोर्ट से जुड़े हैं। यदि प्रत्येक कमानी स्थिरांक $k$ है, तो दिए गए पिण्ड के दोलन की आवत्ति होगी।
$500 \,N \,m ^{-1}$ कमानी स्थिरांक किसी कमानी से $5\, kg$ संहति का कोई कॉलर जुड़ा है जो एक क्षेतिज छड़ पर बिना किसी घर्षण के सरकता है । कॉलर को उसकी साम्यावस्था की स्थिति से $10.0 \,cm$ विस्थापित करके छोड दिया जाता है । कॉलर के
$(a)$ दोलन का आवर्तकाल
$(b)$ अधिकतम चाल तथा
$(c)$ अधिकतम त्वरण परिकलित कीजिए
एक स्प्रिंग दोलक की आवृत्ति दोगुनी करने के लिए हमें
दो स्प्रिंगों के बल नियतांक ${K_1}$ तथा ${K_2}$ हैं। उन्हें क्रमश: ${F_1}$ तथा ${F_2}$ बलों से इस प्रकार खींचा जाता है कि उनकी प्रत्यास्थ ऊर्जा बराबर हो, तो ${F_1}:{F_2}$ है
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक $200$ न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये? (मान लो $g =10$ मी/से $^{2})$