જેનાં પ્રથમ બે પદોનો સરવાળો $-4$ હોય અને પાંચમું પદ ત્રીજા પદથી ચાર ગણુ હોય એવી સમગુણોત્તર શ્રેણી શોધો.
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given conditions,
$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$ .......$(1)$
$a_{5}=4 \times a_{3}$
$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$
$\therefore r=\pm 2$
From $(1),$ we obtain
$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$
$\Rightarrow-4=\frac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\frac{-4}{3}$
Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\frac{a(1-4)}{1+2}$
$\Rightarrow-4=\frac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required $G.P.$ is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$
અહી $a$ અને $b$ ની શુન્યેતર વાસ્તવિક કિમતોની બે જોડો છે i.e. $(a_1,b_1)$ અને $(a_2,b_2)$ જ્યાં $2a+b,a-b,a+3b$ એ સમગુણોત્તર શ્રેણીના ત્રણ ક્રમિક પદો હોય તો $2(a_1b_2 + a_2b_1) + 9a_1a_2$ ની કિમત મેળવો
જો $\text{y}\,=\,{{\text{x}}^{\frac{\text{1}}{\text{3}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{9}}}}\text{.}\,{{\text{x}}^{\frac{\text{1}}{\text{27}}}}\,.....\,\infty $ હોય, તો $\text{y}\,=......$
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$ પ્રથમ $n$ પદ
જો $a = r + r^2 + r^3 + …..+\infty$ હોય તો $r$ નું મૂલ્ય ....... છે.
જો $(y - x), 2(y - a)$ અને $(y - z)$ સ્વરીત શ્રેણીમાં હોય તો $x -a, y -a, z - a …..$ શ્રેણીમાં છે.