Let $a$ be the first term and $r$ be the common ratio of the $G.P.$
According to the given conditions,
$A_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r}$ .......$(1)$
$a_{5}=4 \times a_{3}$
$\Rightarrow a r^{4}=4 a r^{2} \Rightarrow r^{2}=4$
$\therefore r=\pm 2$
From $(1),$ we obtain
$-4=\frac{a\left[1-(2)^{2}\right]}{1-2}$ for $r=2$
$\Rightarrow-4=\frac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\frac{-4}{3}$
Also, $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\frac{a(1-4)}{1+2}$
$\Rightarrow-4=\frac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required $G.P.$ is $\frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots$ or $4,-8,-16,-32 \ldots$
ऐसी $3$ संख्याएँ ज्ञात कीजिए जिनको $1$ तथा $256$ के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
एक समान्तर श्रेणी, गुणोत्तर श्रेणी तथा हरात्मक श्रेणी समान प्रथम तथा अन्तिम पद रखते हैं। तीनों श्रेणियों में पदों की संख्या विषम है, तब तीनों श्रेणियों के मध्य पद होंगे
उस अनन्त गुणोत्तर श्रेणी का, जिसका सार्वअनुपात $r$ हो, योग ज्ञात किया जा सकता है
एक गुणोत्तर श्रेणी का प्रथम पद $a=729$ तथा $7$ वाँ पद $64$ है तो $S _{7}$ ज्ञात कीजिए ?
माना धनात्मक संख्याएँ $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4$ तथा $\mathrm{a}_5$ एक $G.P.$ में है। माना इसके माध्य तथा प्रसरण क्रमशः $\frac{31}{10}$ तथा $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असभाज्य हैं। यदि इन संख्याओं के व्युत्क्रमों का माध्य $\frac{31}{40}$ है तथा $a_3+a_4+a_5=14$ है, तो $m+n$ बराबर है_____________।