સમગુણોત્તર શ્રેણી $5,25,125, \ldots$ માટે $10$ મું પદ અને $n$ મું પદ શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a=5$ and $r=5 .$ Thus, $a_{10}=5(5)^{10-1}=5(5)^{9}=5^{10}$

and $\quad a_{n}=a r^{n-1}=5(5)^{n-1}=5^{n}$

Similar Questions

સમગુણોતર શ્રેણીનાં પ્રથમ અને બીજા પદનો સરવાળો  $12$  હોય અને ત્રીજા અને ચોથા પદ નો સરવાળો $48$ છે. જો સમગુણોતર શ્રેણીના ક્રમિક પદો ધન અને ૠણ હોય તો શ્રેણીનું પ્રથમ પદ મેળવો.

  • [AIEEE 2008]

સાબિત કરો કે સમગુણોત્તર શ્રેણીનાં પ્રથમ $n$ પદોના સરવાળાનો $(n + 1)$ પદથી $(2n)$ માં પદ સુધીના સરવાળા સાથેનો ગુણોત્તર $\frac{1}{r^{n}}$ થાય. 

સમગુણોત્તર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $\frac{65}{12}$ અને તેમના વ્યસ્તનો સરવાળો $\frac{65}{18}$ છે. જે સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદનો ગુણાકાર $1$ અને ત્રીજુ પદ $\alpha$ હોય, તો $2 \alpha \,=.......$

  • [JEE MAIN 2021]

જો ${{\text{a}}_{\text{1}}}{\text{, }}{{\text{a}}_{\text{2}}}{\text{, .......... }}{{\text{a}}_{{\text{50}}}}{\text{ }}$ સમગુણોત્તર શ્રેણીમાં હોય તો,$\frac{{{a_1} - {a_3} + {a_5} - ..... + {a_{49}}}}{{{a_2} - {a_4} + {a_6} - .... + {a_{50}}}} = ........$

અહી બે સમગુણોતર શ્રેણીઓ  $2,2^{2}, 2^{3}, \ldots$ અને $4,4^{2}, 4^{3}, \ldots$ આપેલ છે કે જેમાં અનુક્રમે  $60$ અને $n$ પદ આપેલ છે. જો બધાજ $60+n$ પદોનો સમગુણોતર મધ્યક  $(2)^{\frac{225}{8}}$, હોય તો  $\sum_{ k =1}^{ n } k (n- k )$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]