10-2. Parabola, Ellipse, Hyperbola
medium

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{16}+\frac {y^2} {9}=1$

Option A
Option B
Option C
Option D

Solution

The given equation is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}=1$

Here, the denominator of $\frac{x^{2}}{16}$ is greater than the denominator of $\frac{y^{2}}{9}$.

Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.

On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=4$ and $b=3$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-9}=\sqrt{7}$

Therefore,

The coordinates of the foci are $(\pm \sqrt{7}, \,0)$

The coordinates of the vertices are $(±4,\,0)$

Length of major axis $=2 a=8$

Length of minor axis $=2 b=6$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{7}}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$

Standard 11
Mathematics

Similar Questions

दीर्घवृत्तों (Ellipses) $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ और आयतों (rectangles) $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ के संग्रहों को निम्न प्रकार से परिभाषित करे :

$E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$

$R _1$ : अधिकतम क्षेत्र (largest area) का आयत, जिसकी भुजाएं अक्षों (axes) के समान्तर है, और जो $E _1$ में अंतस्थित (inscribed) है ;

$E _{ n }$ : अध्कितम क्षेत्र वाला दीर्घवृत्त $\frac{ x ^2}{ a _{ n }^2}+\frac{ y ^2}{ b _{ n }^2}=1$ जो $R _{ n -1}, n >1$ में अंतर्स्थित है ;

$R _{ n }$ : अध्कितम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर है, और जो $E _{ n }, n >1$ में अंतस्थित है। तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?

$(1)$ $E _{18}$ और $E _{19}$ की उत्केन्द्रतायें (eccentricities) समान नहीं है

$(2)$ $E _{ o }$ में केन्द्र से एक नाभि (focus) की दूरी $\frac{\sqrt{5}}{32}$ है

$(3)$ $E _9$ के नाभिलम्ब (latus rectum) की लम्बाई $\frac{1}{6}$ है

$(4)$ प्रत्येक पूर्णांक $N$ के लिए $\sum_{ n =1}^{ N }\left( R _{ n }\right.$ का क्षेत्रफल $)<24$ है

normal
(IIT-2019)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.