10-2. Parabola, Ellipse, Hyperbola
medium

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

नाभियाँ $(0,±13),$ संयुग्मी अक्ष की लंबाई $24$ है।

A

$\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$

B

$\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$

C

$\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$

D

$\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$

Solution

Foci $(0,\,\pm 13),$ the conjugate axis is of length $24$.

Here, the foci are on the $y-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

since the foci are $(0,\,\pm 13)$,  $c=13$

since the length of the conjugate axis is $24$,  $2 b=24 \Rightarrow b=12$

We know that  $a^{2}+b^{2}=c^{2}$

$\therefore a^{2}+12^{2}=13^{2}$

$\Rightarrow a^{2}=169-144=25$

Thus, the equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.